Sains Malaysiana 54(6)(2025): 1523-1534

http://doi.org/10.17576/jsm-2025-5406-08

 

Antimalarial Activity Screening from Endophytic Fungus of Red Ginger (Zingiber officinale): in vitro and in silico Studies

(Pemeriksaan Aktiviti Antimalaria daripada Kulat Endofit Halia Bara (Zingiber officinale): Kajian in vitro dan in silico)

 

MUH ADE ARTASASTA1,*, DIANDRA MYTHA FARADILLA1, HERLINA RASYID2, DWI LISTYORINI1, WIRA EKA PUTRA1, DIAN HANDAYANI3, RIGA RIGA4, PING-CHUNG KUO5, HAO-ZE LI5, PEI-HUNG CHANG5, LOEKI ENGGAR FITRI6, HARWOKO HARWOKO7 & HENI ENDRAWATI6

 

1Biotechnology Program, Department of Applied Science, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang, Indonesia

2Chemistry Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia

3Laboratory of Sumatran Biota/Faculty of Pharmacy, Universitas Andalas,

Padang, Indonesia

4Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Padang, Padang, Indonesia

5School of Pharmacy, Collage of Medicine, National Cheng Kung University,

Tainan, Taiwan

6Department of Clinical Parasitology, Faculty of Medicine, Universitas Brawijaya,

Malang, Indonesia

7Department of Pharmacy, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, Indonesia

 

Diserahkan: 27 Mei 2024/Diterima: 23 April 2025

 

Abstract

Diversity exploration of secondary metabolite compounds from plant endophytic fungi is expected to yield novel compounds that can efficiently overcome Plasmodium resistance. This study aimed to assess the antimalarial activity of the endophytic fungus derived from red ginger Zingiber officinale against Plasmodium berghei. Subsequently, the endophytic fungus was isolated from the sample using the dilution method, followed by evaporation. Nine isolates of endophytic fungi were successfully isolated that were assigned as JMR1, JMR2, JMR3, JMR5, JMB1, JMB2, JMB3, JMD1, and JMD2. The antimalarial efficacy showed that the JMR5 isolate exhibited significant activity in suppressing the proliferation of P. berghei. This activity was quantified by a per cent inhibition of 83.01% and an IC50 value of 5.81 µg/mL. The detected antimalarial activity of the JMR5 extract can be related to the presence of several phytochemicals, including alkaloids, flavonoids, and terpenoids. In addition, molecular identification was conducted using ITS primers on the JMR5 isolate, showing a complete genetic similarity of 100% with Aspergillus flavus. GNPS analysis was conducted using LCMS-MS data on ethyl acetate extract. Surafactin c, surafactin c14 and erucamide were probably secondary metabolites in the JMR5 extract. Furthermore, drug-likeness and molecular docking analysis were conducted. The result showed that erucamide is a potential antimalarial due to the fulfil of Lipinski's rule of five and also the binding affinity (- 4.2 kcal/mol) against Plasmepsin I. Based on the results obtained, the development of secondary metabolites from Aspergillus flavus JMR5 as potential antimalarial compounds is important to carry out.

Keywords: Antimalarial; endophytic fungal; molecular docking; Zingiber officinale

 

Abstrak

Penerokaan kepelbagaian sebatian metabolit sekunder daripada kulat endofit tumbuhan dijangka akan menghasilkan sebatian baharu yang boleh mengatasi rintangan Plasmodium dengan cekap. Penyelidikan ini bertujuan untuk menilai aktiviti antimalaria kulat endofit yang diperoleh daripada halia bara Zingiber officinale terhadap Plasmodium berghei. Selepas itu, kulat endofit telah diasingkan daripada sampel menggunakan kaedah pencairan, diikuti dengan penyejatan. Sembilan pencilan kulat endofit telah berjaya dipencilkan yang ditetapkan sebagai JMR1, JMR2, JMR3, JMR5, JMB1, JMB2, JMB3, JMD1 dan JMD2. Keberkesanan antimalaria menunjukkan bahawa pencilan JMR5 mempamerkan aktiviti penting dalam menyekat pembiakan P. berghei. Aktiviti ini dikira dengan perencatan peratus sebanyak 83.01% dan nilai IC50 sebanyak 5.81 µg/mL. Aktiviti antimalaria yang dikesan daripada ekstrak JMR5 boleh dikaitkan dengan kehadiran beberapa fitokimia, termasuk alkaloid, flavonoid dan terpenoid. Di samping itu, pengenalpastian molekul telah dijalankan menggunakan primer ITS pada pencilan JMR5, menunjukkan persamaan genetik lengkap 100% dengan Aspergillus flavus. Analisis GNPS dijalankan menggunakan data LCMS-MS pada ekstrak etil asetat. Surafactin c, surafactin c14 dan erucamide mungkin merupakan metabolit sekunder dalam ekstrak JMR5. Tambahan pula, analisis keserupaan dadah dan dok molekul telah dijalankan. Hasil kajian menunjukkan bahawa erucamide berpotensi sebagai antimalaria kerana memenuhi peraturan lima Lipinski dan juga afiniti mengikat (- 4.2 kcal/mol) terhadap Plasmepsin I. Berdasarkan keputusan yang diperoleh, pembangunan metabolit sekunder daripada Aspergillus flavus JMR5 sebagai sebatian antimalaria yang berpotensi adalah penting untuk dijalankan.

Kata kunci: Antimalaria; dok molekul; kulat endofit; Zingiber officinale

 

RUJUKAN

Afzal, H., Shazad, S., Qamar, S. & Nisa, U. 2013. Morphologogical identification of Aspergillus species from the soil of Larkana District (Sindh, Pakistan). Asian J. Agri. Biol. 1(3): 105-117.

Alhadrami, H.A., Sayed, A.M., El-Gendy, A.O., Shamikh, Y.I., Gaber, Y., Bakeer, W., Sheirf, N.H., Attia, E.Z., Shaban, G.M., Khalifa, B.A., Ngwa, C.J., Pradel, G., Rateb, M.E., Hassan, H.M., Alkhalifah, D.H.M., Abdelmohsen, U.R. & Hozzein, W.N. 2021. A metabolomic approach to target antimalarial metabolites in the Artemisia annua fungal endophytes. Sci. Rep. 11(1): 2770. doi:10.1038/s41598-021-82201-8

Anisha, C. & Radhakrishnan, E.K. 2017. Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc. identifies myriad of bioactive compounds including tyrosol. 3 Biotech. 7(2): 1-10. doi:10.1007/s13205-017-0768-8

Artasasta, M.A., Yanwirasti, Djamaan A. & Handayani, D. 2017. Cytotoxic activity screening of ethyl acetate fungal extracts derived from the marine sponge Neopetrosia chaliniformisAR-01. J. Appl. Pharm. Sci. 7(12): 174-178. doi:10.7324/JAPS.2017.71225

Astalakshmi, D., Gokul, T., Gowri Sankar, K.B., Nandhini, M., Hara Hara Sudhan, M.R., Gowtham, S., Latha, S.T. & Surendra Kumar, M. 2022. Over view on molecular docking: A powerful approach for structure based drug discovery. Int. J. Pharm. Sci. Rev. Res. 77(2): 146-157. doi:10.47583/ijpsrr.2022.v77i02.029

Barnett, H.L. & Hunter, B.B. 1998. Illustrated Genera of Imperfect Fungi. 4th ed. St. Paul, Minnesota: Amer. Phytopathological Society. doi:10.2307/3756026

Belete, T.M. 2022. Recent progress in the development of new antimalarial drugs with novel targets. Drug Des. Devel. Ther. 14: 3875-3889. doi:10.2147/DDDT.S265602

Bell, E.W. & Zhang, Y. 2019. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J. Cheminform. 11(1): 40. doi:10.1186/s13321-019-0362-7

Bhaumik, P., Horimoto, Y., Xiao, H., Miura, T., Hidaka, K., Kiso, Y., Wlodawer, A., Yada, R.Y. & Gustchina, A. 2011. Crystal structure of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium falciparum. Journal of Structural Biology 175(1): 73-84.

Bunbamrung N., Intaraudom C., Dramae A., Komwijit, S., Laorob, T., Khamsaeng, S. & Pittayakhajonwut, P. 2020. Antimicrobial, antimalarial and anticholinesterase substances from the marine-derived fungus Aspergillus terreus BCC51799. Tetrahedron 76(41): 131496. doi:10.1016/j.tet.2020.131496

Calcul, L., Waterman, C., Ma, W.S., Lebar, M.D., Harter, C., Mutka, T., Morton, L., Maignan, P., Van Olphen, A., Kyle, D.E., Vrijmoed, L., Pang, K.L., Pearce, C. & Baker, B.J. 2013. Screening mangrove endophytic fungi for antimalarial natural products. Mar Drugs. 11(12): 5036-5050. doi:10.3390/md11125036

Engeset, R.V., Udnæs, H.C., Guneriussen, T., Koren, H., Malnes, E., Solberg, R. & Alfnes, E. 2003. Improving runoff simulations using satellite-observed time-series of snow covered area. Hydrology Research 34(4): 281-294. doi:10.2166/nh.2003.0008

Faloye, K.O., Tripathi, M.K., Adesida, S.A., Oguntimehin, S.A., Oyetunde, Y.M., Adewole, A.H., Ogunlowo, I.I., Idowu, E.A., Olayemi, U.I. & Dosumu, O.D. 2024. Antimalarial potential, LC-MS secondary metabolite profiling and computational studies of Zingiber officinale. Journal Biomolecule Structure Dynamic 42(5): 2570-2585. Doi: 10.1080/07391102.2023.2205949

Ferreira, M.C., de Carvalho, C.R., Zani, C.L. & Rosa, L.H. 2019. Antimycobacterial and antiplasmodial compounds produced by endophytic fungi: An overview. In Advances in Endophytic Fungal Research. Fungal Biology, edited by Singh, B. Springer, Cham. pp. 17-33. doi:10.1007/978-3-030-03589-1_2

Handayani, D., Ananda, N., Artasasta, M.A., Ruslan, R., Fadriyanti, O. & Tallei, T.E. 2019. Antimicrobial activity screening of endophytic fungi extracts isolated from brown algae Padina sp. J. Appl. Pharm. Sci. 9(3): 9-13. doi:10.7324/JAPS.2019.90302

Ibrahim, S.R.M., Abdallah, H.M., Elkhayat, E.S., Al Musayeib, N.M., Asfour, H.Z., Zayed, M.F. & Mohamed, G.A. 2018. Fusaripeptide A: new antifungal and antimalarial cyclodepsipeptide from the endophytic fungus Fusarium sp. J. Asian Nat. Prod. Res. 20(1): 75-85. doi:10.1080/10286020.2017.1320989

Kongsaeree, P., Prabpai, S., Sriubolmas, N., Vongvein, C. & Wiyakrutta, S. 2003. Antimalarial dihydroisocoumarins produced by Geotrichum sp., an endophytic fungus of Crassocephalum crepidioides. J. Nat. Prod. 66(5): 709-711. doi:10.1021/np0205598

Kumarihamy, M., Ferreira, D., Croom, E.M., Sahu, R., Tekwani, B., Duke, S., Khan, S., Techen, N. & Nanayakkara, N. 2019. Antiplasmodial and cytotoxic cytochalasins from an endophytic fungus, Nemania sp. UM10M, isolated from a diseased Torreya taxifolia leaf. Molecules 24(4): 777. doi:10.3390/molecules24040777

Kuo, L.C. 2011. How to avoid rediscovering the known. Methods Enzymol. 493: 159-168. doi:10.1016/B978-0-12-381274-2.00007-8

Lee, K.S., Cox-Singh, J. & Singh, B. 2009. Morphological features and differential counts of Plasmodium knowlesi parasites in naturally acquired human infections. Malar. J. 8(1): 73. doi:10.1186/1475-2875-8-73

Lehane, A.M. & Saliba, K.J. 2008. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Res. Notes 1: 26. doi:10.1186/1756-0500-1-26

Lipinski, C.A. 2004. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today: Technol. 1(4): 337-341. doi:10.1016/j.ddtec.2004.11.007

Moyo, P., Shamburger, W., van der Watt, M.E., Reader, J., de Sousa, A.C.C., Egan, T.J., Maharaj, V.J., Bringmann, G. & Birkholtz, L-M. 2020. Naphthylisoquinoline alkaloids, validated as hit multistage antiplasmodial natural products. Int. J. Parasitol.: Drugs and Drug Resist. 13: 51-58. doi:10.1016/j.ijpddr.2020.05.003

Nasamu, A.S., Polino, A.J., Istvan, E.S. & Goldberg, D.E. 2020. Malaria parasite plasmepsins: More than just plain old degradative pepsins. J. Biol. Chem. 295(25): 8425-8441. doi:10.1074/jbc.REV120.009309

Neidle, S. 2012. Design principles for quadruplex-binding small molecules. Ther. Appl. Quadruplex Nucleic Acids. pp. 151-174. doi:10.1016/b978-0-12-375138-6.00009-1

Ni Putu, N.R., Ketut Srie, M.J. & Ida Ayu, P.S. 2018. Isolasi dan identifikasi jamur mikroskopis pada rizofer tanaman jeruk Siam (Citrus nobilis Lour.) di Kecamatan Kintamani, Bali. J. Pendidik Biol. Undiksha. 6(1): 10-19.

Nsanzabana, C. 2019. Resistance to artemisinin combination therapies (ACTs): Do not forget the partner Drug! Trop. Med. Infect. Dis. 4(1): 26. doi:10.3390/tropicalmed4010026

Nwobodo, D.C., Okoye, N.N., Sifir Mudkhur, M., Ikem, J.C., Eze, P.M., Okoye, F.B.C., Saki, M. & Esimone, C.O. 2024. In vitro antiplasmodial and anticancer analyses of endophytic fungal ectracts isolated from selected Nigerian medicinal plants. Scientific Reports 14(19): 19765. doi: /10.1038/s41598-024-66456-5

Opajobi, A.O., Ojugbeli, E.T., Uzuegbu, U.E., Elu, C.O., Toloyai, P.E., Awhin, P.E., Oshiegbu, W. & Onyesom, I. 2022. Inhibition of Plasmodium berghei growth by alkaloid extract of Phyllanthus amarus in mice increased haem level and stabilized erythrocyte membrane. Int. J. Health Sci. 6: 13028-13043. doi:10.53730/ijhs.v6ns2.8427

Orjuela-Sánchez, P., Duggan, E., Nolan, J., Frangos, J.A. & Carvalho, L.J. 2012. A lactate dehydrogenase ELISA-based assay for the in vitro determination of Plasmodium berghei sensitivity to antimalarial drugs. Malar. J. 11: 366. doi:10.1186/1475-2875-11-366

Pan, W.H., Xu, X.Y., Shi, N., Tsang, S.W. & Zhang, H.J. 2018. Antimalarial activity of plant metabolites. Int. J. Mol. Sci. 19(5): 1382. doi:10.3390/ijms19051382

Pantsar, T. & Poso, A. 2018. Binding affinity via docking: Fact and fiction. Molecules 23(8): 1899. doi:10.3390/molecules23081899

Riyanti, Balansa, W., Liu, Y., Sharma, A., Mihajlovic, S., Hartwig, C., Leis, B., Rieuwpassa, F.J., Ijong, F.G., Wägele, H., König, G.M. & Schäberle, T.F. 2020. Selection of sponge-associated bacteria with high potential for the production of antibacterial compounds. Sci. Rep. 10(1): 19614. doi:10.1038/s41598-020-76256-2

Saitoh, K.I., Togashi, K., Arie, T. & Teraoka, T. 2006. A simple method for a mini-preparation of fungal DNA. J. Gen. Plant Pathol. 72(6): 348-350. doi:10.1007/s10327-006-0300-1

Shaikh, J.R. & Patil, M. 2020. Qualitative tests for preliminary phytochemical screening: An overview. Int. J. Chem. Stud. 8(2): 603-608. doi:10.22271/chemi.2020.v8.i2i.8834

Tajuddeen, N. & Van Heerden, F.R. 2019. Antiplasmodial natural products: An update. Malar. J. 18(1): 1-62. doi:10.1186/s12936-019-3026-1

Tansuwan, S., Pornpakakul, S., Roengsumran, S., Petsom, A., Muangsin, N., Sihanonta, P. & Chaichit, N. 2007. Antimalarial benzoquinones from an endophytic fungus, Xylaria sp. J. Nat. Prod. 70(10): 1620-1623. doi:10.1021/np0701069

Tanvir, R., Javeed, A. & Rehman, Y. 2018. Fatty acids and their amide derivatives from endophytes: New therapeutic possibilities from a hidden source. FEMS Microbiol. Lett. 365(12): fny114. doi:10.1093/femsle/fny114

Taofeeq Adekunle, A., Bolatito Ester, B., Olabisi Peter, A., Solomon Bankole, O., Udeme Joshia Joshua, I. & Alfa, S. 2015. Characterization of new glycosophorolipid-surfactant produced by Aspergillus niger and Aspergillus flavus. Eur. J. Biotechnol. Biosci. 3(4): 34-39.

Teka, T., Awgichew, T. & Kassahun, H. 2020. Antimalarial activity of the leaf latex of Aloe weloensis (Aloaceae) against Plasmodium berghei in mice. J. Trop. Med. 2020: 1397043. doi:10.1155/2020/1397043

Turner, J.V. & Agatonovic-Kustrin, S. 2006. In silico prediction of oral bioavailability. Compr. Med. Chem. II. 5: 699-724. doi:10.1016/b0-08-045044-x/00147-4

Wicht, K.J., Mok, S. & Fidock, D.A. 2020. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu. Rev. Microbiol. 74: 431-454. doi:10.1146/annurev-micro-020518-115546

Yodsing, N., Lekphrom, R., Sangsopha, W., Aimi, T. & Boonlue, S. 2018. Secondary metabolites and their biological activity from Aspergillus aculeatus KKU-CT2. Curr. Microbiol. 75(5): 513-518. doi:10.1007/s00284-017-1411-y

 

*Pengarang untuk surat-menyurat; email: muh.ade.artasasta.fmipa@um.ac.id

 

 

 

 

 

 

 

           

sebelumnya