Sains Malaysiana 54(6)(2025): 1523-1534
http://doi.org/10.17576/jsm-2025-5406-08
Antimalarial Activity Screening from Endophytic
Fungus of Red Ginger (Zingiber
officinale): in vitro and in silico Studies
(Pemeriksaan Aktiviti
Antimalaria daripada Kulat Endofit Halia Bara (Zingiber officinale): Kajian in vitro dan in silico)
MUH ADE ARTASASTA1,*, DIANDRA MYTHA
FARADILLA1, HERLINA RASYID2, DWI LISTYORINI1,
WIRA EKA PUTRA1, DIAN HANDAYANI3, RIGA RIGA4,
PING-CHUNG KUO5, HAO-ZE LI5, PEI-HUNG CHANG5,
LOEKI ENGGAR FITRI6, HARWOKO HARWOKO7 & HENI
ENDRAWATI6
1Biotechnology
Program, Department of Applied Science, Faculty of Mathematics and Natural
Science, Universitas Negeri Malang, Malang, Indonesia
2Chemistry Department,
Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar,
Indonesia
3Laboratory of Sumatran Biota/Faculty of
Pharmacy, Universitas Andalas,
Padang,
Indonesia
4Department of Chemistry, Faculty of Mathematics
and Natural Science, Universitas Negeri Padang, Padang, Indonesia
5School of Pharmacy, Collage of Medicine,
National Cheng Kung University,
Tainan,
Taiwan
6Department of Clinical Parasitology, Faculty of
Medicine, Universitas Brawijaya,
Malang,
Indonesia
7Department of Pharmacy, Faculty of Health
Sciences, Universitas Jenderal Soedirman, Purwokerto, Indonesia
Diserahkan: 27 Mei 2024/Diterima: 23 April 2025
Abstract
Diversity exploration of secondary metabolite compounds from plant
endophytic fungi is expected to yield novel compounds that can efficiently
overcome Plasmodium resistance. This study
aimed to assess the antimalarial activity of the endophytic fungus derived from
red ginger Zingiber officinale against Plasmodium berghei.
Subsequently, the endophytic fungus was isolated from the sample using the
dilution method, followed by evaporation. Nine isolates of endophytic fungi
were successfully isolated that were assigned as JMR1, JMR2, JMR3, JMR5, JMB1,
JMB2, JMB3, JMD1, and JMD2. The antimalarial efficacy showed that the JMR5 isolate
exhibited significant activity in suppressing the proliferation of P. berghei. This activity was quantified
by a per cent inhibition of 83.01% and an IC50 value of 5.81 µg/mL.
The detected antimalarial activity of the JMR5 extract can be related to the
presence of several phytochemicals, including alkaloids, flavonoids, and
terpenoids. In addition, molecular identification was conducted using ITS
primers on the JMR5 isolate, showing a complete genetic similarity of 100% with Aspergillus flavus. GNPS analysis was conducted using LCMS-MS data on
ethyl acetate extract. Surafactin c, surafactin c14 and erucamide were probably
secondary metabolites in the JMR5 extract. Furthermore, drug-likeness and
molecular docking analysis were conducted. The result showed that erucamide is a
potential antimalarial due to the fulfil of Lipinski's rule of five and also
the binding affinity (- 4.2 kcal/mol) against Plasmepsin I. Based on the
results obtained, the development of secondary metabolites from Aspergillus
flavus JMR5 as potential antimalarial compounds is important to carry out.
Keywords: Antimalarial; endophytic
fungal; molecular docking; Zingiber officinale
Abstrak
Penerokaan kepelbagaian sebatian metabolit
sekunder daripada kulat endofit tumbuhan dijangka akan menghasilkan sebatian baharu
yang boleh mengatasi rintangan Plasmodium dengan cekap. Penyelidikan ini
bertujuan untuk menilai aktiviti antimalaria kulat endofit yang diperoleh
daripada halia bara Zingiber officinale terhadap Plasmodium berghei. Selepas itu, kulat endofit telah diasingkan daripada sampel menggunakan kaedah
pencairan, diikuti dengan penyejatan. Sembilan pencilan kulat endofit telah
berjaya dipencilkan yang ditetapkan sebagai JMR1, JMR2, JMR3, JMR5, JMB1, JMB2,
JMB3, JMD1 dan JMD2. Keberkesanan antimalaria menunjukkan bahawa pencilan JMR5
mempamerkan aktiviti penting dalam menyekat pembiakan P. berghei. Aktiviti ini dikira dengan perencatan peratus sebanyak 83.01% dan nilai IC50 sebanyak 5.81 µg/mL. Aktiviti antimalaria yang dikesan daripada ekstrak JMR5
boleh dikaitkan dengan kehadiran beberapa fitokimia, termasuk alkaloid,
flavonoid dan terpenoid. Di samping itu, pengenalpastian molekul telah
dijalankan menggunakan primer ITS pada pencilan JMR5, menunjukkan persamaan
genetik lengkap 100% dengan Aspergillus flavus. Analisis GNPS dijalankan
menggunakan data LCMS-MS pada ekstrak etil asetat. Surafactin c, surafactin c14
dan erucamide mungkin merupakan metabolit sekunder dalam ekstrak JMR5. Tambahan
pula, analisis keserupaan dadah dan dok molekul telah dijalankan. Hasil kajian
menunjukkan bahawa erucamide berpotensi sebagai antimalaria kerana memenuhi
peraturan lima Lipinski dan juga afiniti mengikat (- 4.2 kcal/mol) terhadap
Plasmepsin I. Berdasarkan keputusan yang diperoleh, pembangunan metabolit
sekunder daripada Aspergillus flavus JMR5 sebagai sebatian antimalaria
yang berpotensi adalah penting untuk dijalankan.
Kata kunci: Antimalaria; dok molekul; kulat
endofit; Zingiber officinale
RUJUKAN
Afzal, H., Shazad, S., Qamar, S. & Nisa, U. 2013. Morphologogical
identification of Aspergillus species from the soil of Larkana District (Sindh,
Pakistan). Asian J. Agri. Biol. 1(3): 105-117.
Alhadrami, H.A., Sayed, A.M., El-Gendy, A.O., Shamikh, Y.I.,
Gaber, Y., Bakeer, W., Sheirf, N.H., Attia, E.Z., Shaban, G.M., Khalifa, B.A.,
Ngwa, C.J., Pradel, G., Rateb, M.E., Hassan, H.M., Alkhalifah, D.H.M.,
Abdelmohsen, U.R. & Hozzein, W.N. 2021. A metabolomic approach to target
antimalarial metabolites in the Artemisia annua fungal endophytes. Sci.
Rep. 11(1): 2770. doi:10.1038/s41598-021-82201-8
Anisha, C. & Radhakrishnan, E.K. 2017. Metabolite
analysis of endophytic fungi from cultivars of Zingiber officinale Rosc.
identifies myriad of bioactive compounds including tyrosol. 3 Biotech.
7(2): 1-10. doi:10.1007/s13205-017-0768-8
Artasasta, M.A., Yanwirasti, Djamaan A. & Handayani, D. 2017.
Cytotoxic activity screening of ethyl acetate fungal extracts derived from the
marine sponge Neopetrosia chaliniformisAR-01. J. Appl. Pharm. Sci.
7(12): 174-178. doi:10.7324/JAPS.2017.71225
Astalakshmi, D., Gokul, T., Gowri Sankar, K.B., Nandhini, M.,
Hara Hara Sudhan, M.R., Gowtham, S., Latha, S.T. & Surendra Kumar, M. 2022.
Over view on molecular docking: A powerful approach for structure based drug
discovery. Int. J. Pharm. Sci. Rev. Res. 77(2): 146-157.
doi:10.47583/ijpsrr.2022.v77i02.029
Barnett, H.L. & Hunter, B.B. 1998. Illustrated Genera
of Imperfect Fungi. 4th ed. St. Paul, Minnesota: Amer. Phytopathological Society. doi:10.2307/3756026
Belete, T.M. 2022. Recent progress in the development of new
antimalarial drugs with novel targets. Drug Des. Devel. Ther. 14: 3875-3889.
doi:10.2147/DDDT.S265602
Bell, E.W. & Zhang, Y. 2019. DockRMSD: An open-source
tool for atom mapping and RMSD calculation of symmetric molecules through graph
isomorphism. J. Cheminform. 11(1): 40. doi:10.1186/s13321-019-0362-7
Bhaumik, P., Horimoto, Y., Xiao, H., Miura, T., Hidaka, K.,
Kiso, Y., Wlodawer, A., Yada, R.Y. & Gustchina, A. 2011. Crystal structure
of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium
falciparum. Journal of Structural Biology 175(1): 73-84.
Bunbamrung N., Intaraudom C., Dramae A., Komwijit, S.,
Laorob, T., Khamsaeng, S. & Pittayakhajonwut, P. 2020. Antimicrobial,
antimalarial and anticholinesterase substances from the marine-derived fungus Aspergillus
terreus BCC51799. Tetrahedron 76(41): 131496.
doi:10.1016/j.tet.2020.131496
Calcul, L., Waterman, C., Ma, W.S., Lebar,
M.D., Harter, C., Mutka, T., Morton, L., Maignan, P., Van Olphen, A., Kyle,
D.E., Vrijmoed, L., Pang, K.L., Pearce, C. & Baker, B.J. 2013. Screening mangrove endophytic fungi for antimalarial
natural products. Mar Drugs. 11(12): 5036-5050. doi:10.3390/md11125036
Engeset, R.V., Udnæs, H.C., Guneriussen, T., Koren, H.,
Malnes, E., Solberg, R. & Alfnes, E. 2003. Improving runoff simulations
using satellite-observed time-series of snow covered area. Hydrology
Research 34(4): 281-294. doi:10.2166/nh.2003.0008
Faloye, K.O., Tripathi, M.K., Adesida, S.A., Oguntimehin, S.A., Oyetunde, Y.M., Adewole, A.H., Ogunlowo,
I.I., Idowu, E.A., Olayemi, U.I. & Dosumu, O.D. 2024. Antimalarial potential, LC-MS secondary metabolite profiling and
computational studies of Zingiber officinale. Journal Biomolecule
Structure Dynamic 42(5): 2570-2585. Doi: 10.1080/07391102.2023.2205949
Ferreira, M.C., de Carvalho, C.R., Zani, C.L. & Rosa, L.H.
2019. Antimycobacterial and antiplasmodial compounds produced by endophytic
fungi: An overview. In Advances in Endophytic Fungal Research. Fungal
Biology, edited by Singh, B. Springer, Cham. pp. 17-33.
doi:10.1007/978-3-030-03589-1_2
Handayani, D., Ananda, N., Artasasta, M.A., Ruslan, R.,
Fadriyanti, O. & Tallei, T.E. 2019. Antimicrobial activity screening of
endophytic fungi extracts isolated from brown algae Padina sp. J.
Appl. Pharm. Sci. 9(3): 9-13. doi:10.7324/JAPS.2019.90302
Ibrahim, S.R.M., Abdallah, H.M., Elkhayat, E.S., Al Musayeib, N.M., Asfour, H.Z., Zayed, M.F. & Mohamed,
G.A. 2018. Fusaripeptide A: new antifungal and
antimalarial cyclodepsipeptide from the endophytic fungus Fusarium sp. J.
Asian Nat. Prod. Res. 20(1): 75-85. doi:10.1080/10286020.2017.1320989
Kongsaeree, P., Prabpai, S., Sriubolmas, N., Vongvein, C. &
Wiyakrutta, S. 2003. Antimalarial dihydroisocoumarins produced by Geotrichum sp., an endophytic fungus of Crassocephalum crepidioides. J. Nat.
Prod. 66(5): 709-711. doi:10.1021/np0205598
Kumarihamy, M., Ferreira, D., Croom, E.M., Sahu,
R., Tekwani, B., Duke, S., Khan, S., Techen, N. & Nanayakkara, N. 2019.
Antiplasmodial and cytotoxic cytochalasins from an endophytic fungus, Nemania sp. UM10M, isolated from a diseased Torreya taxifolia leaf. Molecules 24(4): 777. doi:10.3390/molecules24040777
Kuo, L.C. 2011. How to avoid rediscovering the known. Methods
Enzymol. 493: 159-168. doi:10.1016/B978-0-12-381274-2.00007-8
Lee, K.S., Cox-Singh, J. & Singh, B. 2009. Morphological
features and differential counts of Plasmodium knowlesi parasites in
naturally acquired human infections. Malar. J. 8(1): 73.
doi:10.1186/1475-2875-8-73
Lehane, A.M. & Saliba, K.J. 2008. Common dietary
flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC
Res. Notes 1: 26. doi:10.1186/1756-0500-1-26
Lipinski, C.A. 2004. Lead- and drug-like compounds: The
rule-of-five revolution. Drug Discov. Today: Technol. 1(4): 337-341.
doi:10.1016/j.ddtec.2004.11.007
Moyo, P., Shamburger, W., van der Watt, M.E., Reader, J., de
Sousa, A.C.C., Egan, T.J., Maharaj, V.J., Bringmann, G. & Birkholtz, L-M. 2020.
Naphthylisoquinoline alkaloids, validated as hit multistage antiplasmodial
natural products. Int. J. Parasitol.: Drugs and Drug Resist. 13: 51-58.
doi:10.1016/j.ijpddr.2020.05.003
Nasamu, A.S., Polino, A.J., Istvan, E.S. & Goldberg, D.E.
2020. Malaria parasite plasmepsins: More than just plain old degradative
pepsins. J. Biol. Chem. 295(25): 8425-8441.
doi:10.1074/jbc.REV120.009309
Neidle, S. 2012. Design principles for quadruplex-binding
small molecules. Ther. Appl. Quadruplex Nucleic Acids. pp. 151-174.
doi:10.1016/b978-0-12-375138-6.00009-1
Ni Putu, N.R., Ketut Srie, M.J. & Ida Ayu, P.S. 2018.
Isolasi dan identifikasi jamur mikroskopis pada rizofer tanaman jeruk Siam (Citrus
nobilis Lour.) di Kecamatan Kintamani, Bali. J. Pendidik Biol. Undiksha.
6(1): 10-19.
Nsanzabana, C. 2019. Resistance to artemisinin combination
therapies (ACTs): Do not forget the partner Drug! Trop. Med. Infect. Dis.
4(1): 26. doi:10.3390/tropicalmed4010026
Nwobodo, D.C., Okoye, N.N., Sifir Mudkhur, M., Ikem, J.C.,
Eze, P.M., Okoye, F.B.C., Saki, M. & Esimone, C.O. 2024. In vitro antiplasmodial and anticancer analyses of endophytic fungal ectracts isolated
from selected Nigerian medicinal plants. Scientific Reports 14(19): 19765.
doi: /10.1038/s41598-024-66456-5
Opajobi, A.O., Ojugbeli, E.T., Uzuegbu, U.E., Elu, C.O.,
Toloyai, P.E., Awhin, P.E., Oshiegbu, W. & Onyesom, I. 2022. Inhibition of Plasmodium
berghei growth by alkaloid extract of Phyllanthus amarus in mice
increased haem level and stabilized erythrocyte membrane. Int. J. Health Sci. 6: 13028-13043. doi:10.53730/ijhs.v6ns2.8427
Orjuela-Sánchez, P., Duggan, E., Nolan, J., Frangos, J.A. &
Carvalho, L.J. 2012. A lactate dehydrogenase ELISA-based assay for the in
vitro determination of Plasmodium berghei sensitivity to
antimalarial drugs. Malar. J. 11: 366. doi:10.1186/1475-2875-11-366
Pan, W.H., Xu, X.Y., Shi, N., Tsang, S.W. & Zhang, H.J.
2018. Antimalarial activity of plant metabolites. Int. J. Mol. Sci.
19(5): 1382. doi:10.3390/ijms19051382
Pantsar, T. & Poso, A. 2018. Binding affinity via
docking: Fact and fiction. Molecules 23(8): 1899. doi:10.3390/molecules23081899
Riyanti, Balansa, W., Liu, Y., Sharma, A.,
Mihajlovic, S., Hartwig, C., Leis, B., Rieuwpassa, F.J.,
Ijong, F.G., Wägele, H., König, G.M. & Schäberle, T.F. 2020. Selection of sponge-associated bacteria with
high potential for the production of antibacterial compounds. Sci. Rep.
10(1): 19614. doi:10.1038/s41598-020-76256-2
Saitoh, K.I., Togashi, K., Arie, T. & Teraoka, T. 2006. A
simple method for a mini-preparation of fungal DNA. J. Gen. Plant Pathol.
72(6): 348-350. doi:10.1007/s10327-006-0300-1
Shaikh, J.R. & Patil, M. 2020. Qualitative tests for
preliminary phytochemical screening: An overview. Int. J. Chem. Stud.
8(2): 603-608. doi:10.22271/chemi.2020.v8.i2i.8834
Tajuddeen, N. & Van Heerden, F.R. 2019. Antiplasmodial
natural products: An update. Malar. J. 18(1): 1-62.
doi:10.1186/s12936-019-3026-1
Tansuwan, S., Pornpakakul, S., Roengsumran, S., Petsom, A.,
Muangsin, N., Sihanonta, P. & Chaichit, N. 2007. Antimalarial benzoquinones
from an endophytic fungus, Xylaria sp. J. Nat. Prod. 70(10): 1620-1623.
doi:10.1021/np0701069
Tanvir, R., Javeed, A. & Rehman, Y. 2018. Fatty acids and
their amide derivatives from endophytes: New therapeutic possibilities from a
hidden source. FEMS Microbiol. Lett. 365(12): fny114.
doi:10.1093/femsle/fny114
Taofeeq Adekunle, A., Bolatito Ester, B., Olabisi Peter, A.,
Solomon Bankole, O., Udeme Joshia Joshua, I. & Alfa, S. 2015.
Characterization of new glycosophorolipid-surfactant produced by Aspergillus
niger and Aspergillus flavus. Eur. J. Biotechnol. Biosci. 3(4):
34-39.
Teka, T., Awgichew, T. & Kassahun,
H. 2020. Antimalarial activity of the leaf latex of Aloe weloensis (Aloaceae) against Plasmodium berghei in mice. J. Trop. Med. 2020:
1397043. doi:10.1155/2020/1397043
Turner, J.V. & Agatonovic-Kustrin, S. 2006. In silico prediction
of oral bioavailability. Compr. Med. Chem. II. 5: 699-724.
doi:10.1016/b0-08-045044-x/00147-4
Wicht, K.J., Mok, S. & Fidock, D.A. 2020. Molecular mechanisms
of drug resistance in Plasmodium falciparum malaria. Annu. Rev.
Microbiol. 74: 431-454. doi:10.1146/annurev-micro-020518-115546
Yodsing, N., Lekphrom, R., Sangsopha, W., Aimi, T. & Boonlue,
S. 2018. Secondary metabolites and their biological activity from Aspergillus
aculeatus KKU-CT2. Curr. Microbiol. 75(5): 513-518.
doi:10.1007/s00284-017-1411-y
*Pengarang
untuk surat-menyurat; email: muh.ade.artasasta.fmipa@um.ac.id